skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Gupta, Anupam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Leonardi, Stefano; Gupta, Anupam (Ed.)
    We consider the approximability of constraint satisfaction problems in the streaming setting. For every constraint satisfaction problem (CSP) on n variables taking values in {0,…,q−1}, we prove that improving over the trivial approximability by a factor of q requires Ω(n) space even on instances with O(n) constraints. We also identify a broad subclass of problems for which any improvement over the trivial approximability requires Ω(n) space. The key technical core is an optimal, q−(k−1)-inapproximability for the Max k-LIN-mod q problem, which is the Max CSP problem where every constraint is given by a system of k−1 linear equations mod q over k variables. Our work builds on and extends the breakthrough work of Kapralov and Krachun (Proc. STOC 2019) who showed a linear lower bound on any non-trivial approximation of the MaxCut problem in graphs. MaxCut corresponds roughly to the case of Max k-LIN-mod q with k=q=2. For general CSPs in the streaming setting, prior results only yielded Ω(√n) space bounds. In particular no linear space lower bound was known for an approximation factor less than 1/2 for any CSP. Extending the work of Kapralov and Krachun to Max k-LIN-mod q to k>2 and q>2 (while getting optimal hardness results) is the main technical contribution of this work. Each one of these extensions provides non-trivial technical challenges that we overcome in this work. 
    more » « less